DS n°2 - CORRECTION **SOLUTIONS AQUEUSES – THERMOCHIMIE**

Correction Problème n°1 :Composés électrochromiques dérivés du molybdène (E3A MP 2011)

D1a.

$$MoS_{2(s)} + 7/2 O_{2(g)} = MoO_{3(s)} + 2 SO_{2(g)}$$
 [1
 $Δ_rH^\circ = Σ ν_i.Δ_rH^\circ_i$
 $Δ_rH^\circ = 1 \times (-745,1) + 2 \times (-296,8) - 1 \times (-235,1)$
 $Δ_rH^\circ(298) = -1104 \text{ kJ.mol}^{-1}$

Dans le cadre de l'approximation d'Ellingham, Δ_rH° est indépendant de la température.

 $\Delta_r H^{\circ}(700) = -1104 \text{ kJ.mol}^{-1}$

D1b.

 $\Delta_r H^{\circ} < 0$

La réaction est exothermique.

D1c.

état A état B réactifs à T = 700 Kproduits à T_F

> état C produits à T = 700 K

 $\Delta H_{AB} = Q_{AB}$ (isobare)

 $Q_{AB} = 0$ (transformation rapide considérée adiabatique)

 $\Delta H_{AB} = 0$

 $\Delta H_{AB} = \Delta H_{AC} + \Delta H_{CB}$

 $\Delta H_{AC} = \xi \cdot \Delta_r H^{\circ}(700)$ (réaction isobare et isotherme)

 $\Delta H_{CB} = \sum n_i C_P^{\circ}{}_i \Delta T$

 $\xi \cdot \Delta_r H^{\circ}(700) + \sum_i n_i C_P \cdot \Delta_i T = 0$ $\xi \cdot \Delta_r H^{\circ}(700) + (\xi \cdot C_P^{\circ}(MoO_3) + 2\xi C_P^{\circ}(SO_2) + 14\xi C_P^{\circ}(N_2)) \cdot \Delta T = 0$ $\Delta T = -(-1104.103) / (75.0 + 2 \times 39.9 + 14 \times 29.1) = 1964$ $T_F = 1964 + 700$ $T_F = 2664 \text{ K}$

D2a.

$$M_0O_{3(s)} + H_{2(g)} = M_0O_{2(s)} + H_2O_{(g)}$$
 [2]

$$\Delta_r G^{\circ}_{2}(800) = -85600 - 26,7 \times 800 = -106960 \text{ J.mol}^{-1}$$

 $\Delta_r G^{\circ}_{2}(800) = -\text{ RT.ln } K^{\circ}_{2}(800)$

d'où $K^{\circ}_{2}(800) = 9.7.10^{6}$

D2b.

$$\begin{split} &\Delta_r G = \Delta_r G^\circ + RT.ln \; Q = \text{-}RT.ln \; K^\circ + RT.ln \; Q = RT.ln \; (Q/K^\circ) \\ &A = \text{-}\Delta_r G = RT.ln \; (K^\circ/Q) \end{split}$$

 $Q = P(H_2O)/P(H_2)$ l'activité des solides valant 1.

Comme initialement il n'y a pas de H_2O , Q = 0.

 $K^{\circ}/Q = +\infty$

 $ln(K^{\circ}/Q) > 0$

donc A > 0

D'après la condition d'évolution spontanée A.d $\xi > 0$, on a d $\xi > 0$.

Le système évolue spontanément dans le sens direct. La réaction démarre instantanément.

 $K_2^{\circ} = 9.7.10^6$, la réaction peut être considérée comme totale.

Pour consommer la totalité de MoO₃ (ξ =N), il faut introduire n₁ = N mol de H₂.

$$n_1 = N$$

D2c.

$$M_0O_{2(s)} + 2 H_{2(g)} = M_{0(s)} + 2 H_2O_{(g)}$$
 [3]

$$\Delta_r G^{\circ}_{3}(1000) = 105300 - 98,6 \times 1000 = 6700 \text{ J.mol}^{-1}$$

 $\Delta_r G^{\circ}_{3}(1000) = - \text{ RT.ln } K^{\circ}_{3}(1000)$

 $d'où K^{\circ}_{3}(1000) = 0.45$

D2d.

$$MoO_{2(s)} + 2 H_{2(g)} = Mo_{(s)} + 2 H_2O_{(g)}$$
 [3]

 $Q = P(H_2O)^2/P(H_2)^2$ l'activité des solides valant 1.

Initialement, H_2O est présent (issu de [2]) et H_2 est présent en infime quantité d'où $Q = +\infty$

 $K^{\circ}/O = 0^{+}$

 $ln(K^{\circ}/Q) < 0$

donc A < 0

D'après la condition d'évolution spontanée A.d $\xi > 0$, on a d $\xi < 0$.

Le système évolue spontanément dans le sens indirect. La réaction ne démarre donc pas instantanément.

$$\begin{array}{ll} \grave{A} \text{ l'issu de [2], } n(MoO_2) = N \text{ et } n(H_2O) = N. \\ & MoO_{2(s)} \ + \ 2 \ H_{2(g)} \ = \ Mo_{(s)} \ + \ 2 \ H_2O_{(g)} \\ EI \qquad N \qquad \qquad n_2 \qquad 0 \qquad N \end{array} \endaligned \endalign$$

$$Q = P(H_2O)^2/P(H_2)^2$$
 l'activité des solides valant 1.

$$P(H_2O) = N/(n_2 + N)$$
 . P et $P(H_2) = n_2/(n_2 + N)$. P

 $Q = (N/n_2)^2$

$$A = RT.ln (K^{\circ}_{3}/Q)$$

Pour que la réaction démarre, il faut A > 0, soit $K^{\circ}_{3}/Q > 1$.

$$K^{\circ}_{3} > Q = (N/n_{2})^{2}$$

$$n_2 > \frac{N}{\sqrt{K^{\circ}_3}}$$

Pour assurer le démarrage, il faut $n_2 > 1,5.N$.

D2e.

 $K^{\circ}_{3} = 0.45$ donc cette réaction ne peut pas être considérée comme totale.

On souhaite consommer MoO₂, soit N- ξ =0, ξ = N

$$K_3^{\circ} = P(H_2O)^2/P(H_2)^2$$

avec
$$P(H_2O) = n(H_2O)/n_{gaz}$$
. P et $P(H_2) = n(H_2)/n_{gaz}$. P

on obtient
$$K^{\circ}_3 = (n(H_2O)/n(H_2))^2$$

$$K^{\circ}_{3} = (3N/(n_{3}-2N))^{2}$$

$$n_3 = 2 N + 3 \frac{N}{\sqrt{K_3^{\circ}}} = N.(2 + \frac{3}{\sqrt{K_3^{\circ}}})$$

Pour réduire la totalité de MoO_2 , il faut ajouter $n_3 = 6.5$.N.

D2f.

$$\begin{array}{l} n(H_2) = n_1 + n_3 = 7,5.N \\ N = n(MoO_3) = m(MoO_3)/M(MoO_3) = 3.10^6 \, / \, (95,9 + 3 \times 16) = 20,8.10^3 \; mol \\ n(H_2) = 156.10^3 \; mol \end{array}$$

D2g.

La phase gazeuse produite contient l'excédent de H₂ et H₂O.

Il faut donc se débarrasser de $H_2O_{(g)}$ en asséchant la phase gazeuse avant de la réinjecter dans la réacteur.

En effet, la présence initiale de H₂O va rendre l'étape [2] thermodynamique plus défavorable et augmenter n₃.

Correction Problème n°2: Métallurgie du vanadium

1.

L'approximation d'Ellingham consiste à supposer que $\Delta_r H^o$ et $\Delta_r S^o$ sont indépendants de la température sur un intervalle de température où n'intervient aucun changement d'état.

```
2.
```

3.

$$\Delta_r H^{\circ}_1 = 2/5 \times -1551 - 4/5 \times 0 - 1 \times 0$$

 $\Delta_r H^{\circ}_1 = -620 \text{ kJ.mol}^{-1}$

$$\Delta_r S^{\circ}_1 = 2/5 \times 131 - 4/5 \times 28,9 - 1 \times 205,2$$

 $\Delta_r S^{\circ}_1 = -175,9 \text{ J.K}^{-1}.\text{mol}^{-1}$

$$\Delta_r G^{\circ}_{1} = \Delta_r H^{\circ}_{1} - T.\Delta_r S^{\circ}_{1}$$

 $\Delta_r G^{\circ}_{1} = -620 + 0.176.T \text{ (kJ.mol}^{-1)}$

4.

v = X - Y avec X nombre de paramètres intensifs et Y nombre de relations entre ces paramètres

$$X = 5$$
 $x(V_2O_5,s)$; $x(O_2,g)$; T ; P

Y = 4 3 phases
$$x(V,s) = 1$$
; $x(V_2O_5,s) = 1$; $x(O_2,g) = 1$
1 équilibre donc 1 relation de Guldberg et Waage

v = 1

L'utilisateur ne peut contrôler qu'un seul paramètre intensif.

Si on travaille à pression atmosphérique, l'utilisateur n'a pas le choix de la température pour que le système soit à l'équilibre.

5.

Influence de T

 $\Delta_{\rm r} {\rm H}^{\circ}_{\rm 1} < 0$, la réaction est exothermique.

Loi de Van t'Hoff : $d(\ln K^{\circ})/dT = \Delta_r H^{\circ}_1/(RT^2)$

si T augmente, dT > 0 et donc $d(\ln K^{\circ}) < 0$ (car $\Delta_r H^{\circ}_1 < 0$), d'où $\ln K^{\circ}$ diminue, soit K° diminue.

K° diminue quand T augmente.

On souhaite former du vanadium donc favoriser [1] dans le sens indirect.

Il faut donc diminuer K°, c'est à dire augmenter la température.

La production de vanadium est favorisée à haute température.

Influence de P

$$\overline{K^{\circ} = P^{\circ}/P(O_2)_{eq}}$$

$$Q = P^{\circ}/P(Q_2)$$

Partant d'un état d'équilibre, si on diminue P(O₂) alors Q augmente.

Q > K° donc le système évolue dans le sens indirect de formation du vanadium.

La production de vanadium est favorisée à basse pression.

6.

On fixe T et V. $Q = P^{\circ}/P(O_2) = (P^{\circ}V)/(n(O_2)RT)$ L'ajout de diazote gazeux ne modifie pas Q.

Le diazote n'a aucune influence.

Il est donc possible de travailler avec le dioxygène de l'air.

7. $\Delta_r G^{\circ}_{1} = -620 + 0,176.T \text{ (kJ.mol}^{-1}\text{)}$ à 298 K, $\Delta_r G^{\circ}_{1} = -568 \text{ kJ.mol}^{-1}$ $\Delta_r G^{\circ}_{1} = -RT.\ln K^{\circ}$ $K^{\circ} = 4.10^{99}$

$$K^{\circ} = P^{\circ}/P(O_2)_{eq}$$

 $P(O_2)_{eq} = 2,5.10^{-100} bar$

L'air ambiante est modélisé par T = 298 K et $P(O_2)$ = 0,2 bar $(P(N_2)$ = 0,8 bar). A = RT.ln (K°/Q) avec $Q = P^{\circ}/P(O_2)$ et $K^{\circ} = P^{\circ}/P(O_2)_{eq}$ A = RT.ln $(P(O_2)/P(O_2)_{eq})$ A = 8,31 × 298 ln $(0,2/2,5.10^{-100}) > 0$

D'après la condition d'évolution spontanée $A.d\xi>0$, si A>0 alors $d\xi>0$, le système évolue spontanément dans le sens direct (de formation de $V_2O_{5(s)}$).

À l'air ambiant, le vanadium se trouve sous forme d'oxyde de vanadium solide $V_2O_{5(s)}$.

8.

$$A = A^{\circ} - RT.ln Q$$

$$A^{\circ} = -\Delta_r G^{\circ}_1 = -\Delta_r H^{\circ}_1 + T.\Delta_r S^{\circ}_1$$

$$A = -\Delta_r H^{\circ}_1 + T.\Delta_r S^{\circ}_1 - RT.ln Q$$

On veut former du vanadium donc on souhaite que le système évolue dans le sens indirect : A < 0.

$$-\Delta_r H^{\circ}_{1} + T.\Delta_r S^{\circ}_{1} - RT.ln Q < 0$$

$$T.\Delta_r S_1^{\circ} - RT.\ln Q \leq \Delta_r H_1^{\circ}$$

 $T \geq \Delta_r H_1^{\circ} / (\Delta_r S_1^{\circ} - R.\ln Q)$

 $A_rH^{\circ}_1/(\Delta_rS^{\circ}_1 - R.\ln Q)$ le sens de l'inégalité change car le dénominateur est négatif

$$T > 620.10^3 / (-176 - 8,31. \ln (1/0,2))$$

T > 3270 K

Il faudrait donc porter $V_2O_{5(s)}$ à plus de 3270 K.

Il est donc impossible de former $V_{(s)}$ par simple chauffage de $V_2O_{5(s)}$ pour T < 963 K.

9.

Pour 963 < T < 2163 K, le vandium est solide et l'oxyde de vanadium liquide.

[1']:
$$4/5 V_{(s)} + O_{2(g)} = 2/5 V_2 O_{5(\ell)}$$

10.
$$\Delta_{r}^{H^{\circ}} \stackrel{!}{\underset{1}{\vee}} V_{2}O_{5(\ell)}$$

$$\Delta_{r}^{H^{\circ}} \stackrel{!}{\underset{1}{\vee}} 2/5 V_{2}O_{5(\ell)}$$

$$2/5 V_{2}O_{5(\epsilon)}$$

$$\Delta_{\rm r} H^{\circ}{}_{\rm l}' = \Delta_{\rm r} H^{\circ}{}_{\rm l} + 2/5.\Delta_{\rm fus} H^{\circ}$$

 $\Delta_{\rm r} H^{\circ}{}_{\rm l}' = -620 + 2/5 \times 64,5$
 $\Delta_{\rm r} H^{\circ}{}_{\rm l}' = -594 \text{ kJ.mol}^{-1}$

De même:

$$\Delta_r S^{\circ}_{1}' = \Delta_r S^{\circ}_{1} + 2/5.\Delta_{fus} S^{\circ}$$

 $\Delta_r S^{\circ}_{1}' = -175.9 + 2/5 \times 67.0$
 $\Delta_r S^{\circ}_{1}' = -149 \text{ J.K}^{-1}.\text{mol}^{-1}$

$$\Delta_r G^{\circ}_{1}' = \Delta_r H^{\circ}_{1}' - T.\Delta_r S^{\circ}_{1}'$$

 $\Delta_r G^{\circ}_{1}' = -594 + 0.149.T (en kJ.mol^{-1})$

12.

On reprend le même raisonnement qu'en 8..

Il faut $T > \Delta_r H_1^{\circ} / (\Delta_r S_1^{\circ} - R. \ln Q)$.

 $T > -594.103 / (-149 - 8.31 \times ln (1/0.2))$

T > 3658 K

Il faudrait donc porter V₂O_{5(t)} à plus de 3658 K.

Il est donc impossible de former $V_{(s)}$ par simple chauffage de $V_2O_{5(t)}$ pour 963 < T < 2163 K.

13.

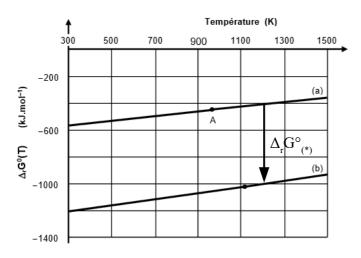
(*)
$$2/5 V_2O_5 + 2 Ca = 4/5 V + 2 CaO$$

 $[a]: \quad 4/5 \ V \ + \ O_2 \ = \ 2/5 \ V_2 O_5$

[b]: $2 \text{ Ca} + \text{O}_2 = 2 \text{ CaO}$

$$\begin{aligned} (*) &= [b] - [a] \\ \Delta_r G^{\circ}_{(*)} &= \Delta_r G_{\circ [b]} - \Delta_r G^{\circ}_{[a]} \end{aligned}$$

À T donnée, on lit $\Delta_r G^{\circ}_{(*)}$ comme l'écart entre les ordonnées des courbes [b] et [a].



16/10/2019 Solutions aqueuses – Thermochimie

14.

Par lecture graphique, on a $\Delta_r G^\circ_{(^*)}$ de l'ordre de -600 kJ.mol $^{\text{--}1}$ entre 300 et 1500 K.

 $K^{\circ} = \exp(-\Delta_r G^{\circ}_{(*)}/RT)$

ce qui donne K° compris entre $\exp(240)$ et $\exp(48)$, $K^{\circ} >> 1$.

La transformation (*) est thermodynamiquement très favorable.

15.

À 300 K, toutes les espèces sont solides et les solides sont non miscibles, donc leurs activités valent 1. Q = 1.

$$K^{\circ}(300) = \exp(240) > 1$$

$$A = RT.ln (K^{\circ}/Q) > 0$$

D'après la condition d'évolution spontanée, $A.d\xi > 0$, le système évolue dans le sens direct.

(*) évolue spontanément dans le sens direct de formation du vanadium.

16.

À 300 K, le réaction (*) est très largement favorable ($K^{\circ} = \exp(240)$), à 1223 K, elle le reste encore largement ($K^{\circ} = \exp(48) = 7.10^{20}$).

L'intérêt pour l'industriel de travailler à haute température (ce qui présente un coût) est d'améliorer la cinétique de la réaction (la vitesse de réaction devant être bien plus élevée à 1223 K qu'à 300 K).

Correction Problème n°3: Utilisation du mélange eau-glycol comme mélange de refroidissement antigel (Centrale-Supélec MP 2013)

A1.

On étudie l'équilibre de fusion : $H_2O_{(s)} = H_2O_{(\ell)}$.

$$d\Delta_{fus}H^{\circ}/dT = C^{\circ}_{P,m}(H_2O_{(\ell)}) - C^{\circ}_{P,m}(H_2O_{(s)}) = (75,30 - 36,18) = 39,12$$

 $d\Delta_{fus}H^{\circ} = 39,12.dT$

Par intégration entre T = 273,15 K et T, on obtient :

$$\Delta_{\text{fus}} H^{\circ}(T) - \Delta_{\text{fus}} H^{\circ}(273,15) = 39,12.(T - 273,15)$$

$$\Delta_{\text{fus}}$$
H°(T) = 5,994.10³ + 39,12.(T – 273,15)

$$\Delta_{\text{fus}}\text{H}^{\circ}(\text{T}) = -4692 + 39,12.\text{T (en J.mol}^{-1})$$

A2.1.

On utilise l'expression générale du potentiel chimique :

$$\mu = \mu^{\circ} + RT.ln(a)$$

L'eau solide est seule dans sa phase donc $a(H_2O_{(s)}) = 1$

$$\mu(H_2O_{(s)},T,P) = \mu^{\circ}(H_2O_{(s)},T)$$

L'eau liquide est en mélange avec le glycol, la solution est supposée idéale donc $a(H_2O_{(\ell)})=x_2$.

$$\mu(H_2O_{(\ell)},T,P) = \mu^{\circ}(H_2O_{(\ell)},T) + RT.ln(x_2)$$

A2.2.

à l'équilibre de la réaction : $H_2O_{(s)} = H_2O_{(\ell)}$ on a $\mu(H_2O_{(s)},T,P) = \mu(H_2O_{(\ell)},T,P)$

$$\begin{aligned} soit : \mu^{\circ}(H_2O_{(s)},T) &= \mu^{\circ}(H_2O_{(\ell)},T) + RT.ln(x_2) \\ \mu^{\circ}(H_2O_{(\ell)},T) &- \mu^{\circ}(H_2O_{(s)},T) = - RT.ln(x_2) \end{aligned}$$

or
$$\Delta_r G^{\circ} = \Sigma v_i \cdot \mu^{\circ}_i = \mu^{\circ}(H_2 O_{(t)}, T) - \mu^{\circ}(H_2 O_{(s)}, T)$$
 ici $\Delta_r G^{\circ}$ est noté $\Delta_{\text{fus}} G^{\circ}(H_2 O, T)$

soit
$$\Delta_{\text{fus}}G^{\circ}(H_2O,T) = -RT.\ln(x_2)$$

on a bien $\Delta_{\text{fus}}G^{\circ}(H_2O,T)/T = -R.\ln(x_2)$

A2.3.

La relation de Gibbs-Helmholtz : $\frac{\partial \left(\frac{G}{T}\right)}{\partial T} = -\frac{H}{T^2}$

devient pour les grandeurs standard de réaction : $\frac{d\left(\frac{\Delta_r G^{\circ}}{T}\right)}{dT} = -\frac{\Delta_r H^{\circ}}{T^2}$

appliquée à la réaction de fusion de l'eau et grâce au résultat du A2.2. :

$$\frac{d(-R.\ln(x_2))}{dT} = -\frac{\Delta_{\text{fus}} H^{\circ}(H_2O, T)}{T^2}$$

on a
$$\frac{\Delta_{\text{fus}} \operatorname{H}^{\circ}(\operatorname{H}_{2}\operatorname{O}, \operatorname{T})}{\operatorname{T}^{2}} = \operatorname{R} \frac{\operatorname{d} \ln x_{2}}{\operatorname{d} \operatorname{T}}$$

A2.3.

d'après **A1.**
$$\Delta_{\text{fus}}$$
H°(T) = -4692 + 39,12.T soit (-4692/T² + 39,12/T).dT = R.d ln(x₂)

en intégrant entre (état eau liquide pure : $T_f = 273,15 \text{ K}$, $x_2 = 1$) et (état eau liquide en mélange T, x_2), on obtient :

$$4692.(1/T-1/T_{\rm f}) + 39,12.ln(T/T_{\rm f}) = R.ln(x_2/1) \ avec \ R = 8,314 \ J \cdot K^{\text{--}1} \cdot mol^{\text{--}1}$$

soit $\ln x_2 = 564,35.(1/T - 1/T_f) + 4,71.\ln(T/T_f)$ qui est l'expression proposée.

A2.4.

Pour $T_f = -27,0^{\circ}C = 246,15$ K, on obtient grâce à la formule précédente : $x_2 = 0,77$ (fraction en eau)

La fraction molaire en glycol vaut $x_1 = 0.23$.

B1.

couple
$$Cr_2O_7^{2-}/Cr^{3+}$$

 $Cr_2O_7^{2-} + 14 H^+ + 6 e^- = 2 Cr^{3+} + 7 H_2O$ (1)

couple
$$Fe^{3+} / Fe^{2+}$$

 $Fe^{3+} + e^{-} = Fe^{2+}$ (2)

couple
$$CO_2 / C_2H_6O_2$$

2 $CO_2 + 10 H^+ + 10 e^- = C_2H_6O_2 + 2 H_2O$ (3)

B2.

étape 1 : oxydation du glycol ($C_2H_6O_2$) par les ions dichromate $Cr_2O_7^{2-}$ 5 × (1) – 3 × (3) donne après simplifications :

bilan:
$$3 C_2 H_6 O_2 + 5 C r_2 O_7^2 + 40 H^+ = 6 C O_2 + 10 C r^{3+} + 29 H_2 O_7^2$$

étape 2 : réduction de l'excès de dichromate par les ions Fe²⁺

 $(1) - 6 \times (2)$ donne après simplifications :

bilan:
$$Cr_2O_7^{2-} + 6 Fe^{2+} + 14 H^+ = 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$$

B3.

On réalise un dosage en retour :

$$n(Cr_2O_7^{2-})_{introduit} = n(Cr_2O_7^{2-})_{consommé} + n(Cr_2O_7^{2-})_{restant}$$

à l'équivalence du dosage (2) :

$$n(Fe^{2+})/6 = n(Cr_2O_7^{2-})_{restant}/1$$

et grâce à la 1^{ère} étape :

$$n(gly)/3 = n(Cr_2O_7^{2-})_{consommé}/5$$

soit
$$n(Cr_2O_7^{2-}) = 5.n(gly)/3 + n(Fe^{2+})/6$$

B4.

$$\begin{array}{l} n(Cr_2O_7^{2\text{-}}) = c_1.V_1 = 0.1 \times 10.10^{\text{-}3} = 1,00.10^{\text{-}3} \text{ mol} \\ n(Fe^{2\text{+}}) = c_2.V_{\text{eq}} = 0.25 \times 9,3.10^{\text{-}3} = 2,33.10^{\text{-}3} \text{ mol} \\ soit \ n(gly) = 3,68.10^{\text{-}4} \text{ mol} \\ \text{C'est la quantit\'e de glycol dans } V_3 = 10,0 \text{ mL de S soit } c_3 = n(gly)/V_3 \\ \textbf{c}_3 = \textbf{3.68.10}^{\text{-}2} \text{ mol} \cdot \textbf{L}^{\text{-}1} \end{array}$$

La solution commercial est 200 fois plus concentrée, $C = 200.c_3$. $C = 7,35 \text{ mol} \cdot L^{-1}$

B5.

```
1 L de la solution d'antigel pèse m = 1060 g (grâce à \rho = 1,06 g·cm<sup>-3</sup>)
1 L contient 7,35 mol de glycol soit m(glycol) = n(glycol).M(glycol) = 7,35 × 62,1 = 456,4 g on en déduit m(eau) = m – m(glycol) = 1060 – 456,4 = 603,6 g soit n(eau) = m(eau)/M(eau) = 603,6 / 18 = 33,53 mol
```

$$x_1 = n(glycol)/(n(glycol+n(eau)) = 7,35/(7,35+33,53)$$

 $x_1 = 0,18$

Dans le cas du modèle des solutions (eau/glycol) idéales, on calcule $x_1 = 0.23$. Par dosage, on obtient $x_1 = 0.18$.

L'écart relatif (0,23-0,18)/0,18 = 0,28) est de 28 % ce qui est assez important.

Le calcul théorique basé sur un mélange eau/glycol idéal est incorrect.

 $a(H_2O_{(\ell)})$ n'est pas assimilable à x_2 . Il existe des modèles plus complexes pour les solutions non idéales (hors programme CPGE).

Correction Problème n°4 : L'argent en solution aqueuse (Centrale-Supélec MP 2011)

A1.

Etant donné que l'on réalise le dosage sur une prise d'essai de $V_0 = 50$ mL d'une solution préalablement préparée, tous les volumes prélevés pour réaliser cette solution doivent l'être avec précision.

La dissolution de la poudre de lait dans $V_s = 100 \text{ mL}$ d'eau tiède devra être réalisée dans une fiole jaugée de 100 mL. Les volumes $V_1 = 50$ mL et $V_2 = 10$ mL devront être prelevés à l'aide de pipettes jaugées de 50 et 10 mL. La solution aura donc un volume précis de 160 mL.

La prise d'essai de $V_0 = 50$ mL des 160 mL de la solution précédente devra être prélevée à l'aide d'une pipette jaugée de 50 mL.

Le volume d'indicateur (1 mL) n'a pas à être précis.

```
A2.
1ère étape : formation du précipité de AgCl
Ag^+ + Cl^- = AgCl_{(s)}
2ème étape : dosage de l'excès de Ag+
Ag^+ + SCN^- = AgSCN_{(s)}
3<sup>ème</sup> : repérage de l'équivalence
Fe^{3+} + SCN_{-} = Fe(SCN)^{2+}
```

A3.

On remarque la possibilité de former un hydroxyde de fer Fe(OH)_{3(s)} qui pourrait gêner le principe de dosage en faussant le repérage de l'équivalence réalisé par la solution d'alun ferrique.

```
Calcul du pH d'apparition de Fe(OH)<sub>3</sub>
Fe(OH)_{3(s)} = Fe^{3+} + 3 OH
K_{S3} = [Fe^{3+}] \cdot [OH^-]^3
1 mL de solution saturé d'alun ferrique ammocial
dans 1 mL, m = 1,24 g (solubilité 1240 g.L<sup>-1</sup>) de solide soit n = 2,6.10^{-3} mol (M = 482,2 g·mol<sup>-1</sup>)
soit [Fe^{3+}]_{indicateur} = 2.6.10^{-3}/1.10^{-3} = 2.6 \text{ mol} \cdot L^{-1}
1 mL sont introduits dans 50 mL de prise d'essai soit une dilution par 50
[Fe^{3+}] = 5.2.10^{-2} \text{ mol} \cdot L^{-1}
avec K_{S3} = 10^{-38,0} et [Fe^{3+}] = 5,2.10^{-2} mol·L<sup>-1</sup>
on obtient une précipitation pour [OH^{-}] = (10^{-38.0}/5, 2.10^{-2})^{1/3} = 5.8.10^{-13} \text{ mol} \cdot L^{-1}
pOH = 12,2
soit pH = 1.8
```

Il faut un pH inférieur à 1,8 pour éviter la formation de Fe(OH)_{3(s)} donc un milieu fortement acide.

A4.

La teinte est due à la réaction :

$$Fe^{3+} + SCN^{-} = Fe(SCN)^{2+}$$

visible quand $[Fe(SCN)^{2+}] = 5,0.10^{-6} \text{ mol} \cdot L^{-1}$

On se place désormais à l'apparition de la coloration « rose saumon », et on cherche à calculer la concentration résiduelle en Ag^+ .

$$[Fe^{3+}]$$
 + $[Fe(SCN)^{2+}]$ = 5,0.10⁻² mol·L⁻¹ (par conservation de l'élément fer de l'indicateur coloré) $[Fe^{3+}]$ = 5,0.10⁻² mol·L⁻¹

$$\begin{split} \beta &= [Fe(SCN)^{2^+}]/([Fe^{3^+}].[SCN^-]) \\ soit [SCN^-] &= [Fe(SCN)^{2^+}]/(\beta.[Fe^{3^+}]) \\ [SCN^-] &= (5,0.10^{-6}) \, / \, (10^{+2.9} \times 5,0.10^{-2}) \\ [SCN^-] &= 1,3.10^{-7} \, mol \cdot L^{-1} \end{split}$$

$$\begin{split} AgSCN_{(s)} &= Ag^{+} + SCN^{-} \\ K_{S2} &= [Ag^{+}].[SCN^{-}] \\ [Ag^{+}] &= K_{S2}/[SCN^{-}] = 10^{-12} / 1,3.10^{-7} \\ [Ag^{+}] &= 7,9.10^{-6} \text{ mol} \cdot L^{-1} \end{split}$$

On en déduit qu'à l'apparition de la coloration, il ne reste quasiment plus d'ions Ag⁺ en solution par rapport à la concentration apporté de l'ordre de 10⁻²-10⁻³ mol.L⁻¹. La technique permet donc de calculer précisemment la quantité d'ions Ag⁺ qui n'a pas réagi avec les ions Cl⁻.

A5.

```
Prise d'essai V_0 = 50 mL à l'équivalence de la réaction de dosage Ag^+ + SCN^- = AgSCN_{(s)} n(Ag^+)_{dosé}/1 = n(SCN^-)/1 n(Ag^+)_{dosé} = C(SCN^-).V_{eq} = 2,50.10^{-2} \times 20.10^{-3} n(Ag^+)_{dosé} = 5,00.10^{-4} mol
```

Dans la solution initiale de volume $V = V_S + V_1 + V_2 = 100+50+10 = 160 \text{ mL}$

$$n(Ag^{+})_{restant} = n(Ag^{+})_{dos\acute{e}} \times 160 / 50$$

 $n(Ag^{+})_{restant} = 1,60.10^{-3} \text{ mol}$

or
$$n(Ag^+)_{introduit} = C(Ag^+).V_1 = 5,00.10^{-2} \times 50.10^{-3}$$

 $n(Ag^+)_{introduit} = 2,50.10^{-3}$ mol

Dosage en retour de Ag^+ : $n(Ag^+)_{introduit} = n(Ag^+)_{consomm\acute{e}} + n(Ag^+)_{restant}$ $n(Ag^+)_{consomm\acute{e}} = n(Ag^+)_{introduit} - n(Ag^+)_{restant} = 2,50.10^{-3} - 1,60.10^{-3}$ $n(Ag^+)_{consomm\acute{e}} = 0,90.10^{-3}$ mol

 Ag^+ est consommé par : $Ag^+ + Cl^- = AgCl_{(s)}$ soit n(Cl^-) = n(Ag^+)_{consommé} n(Cl^-) = 0,90.10-3 mol

Il y a donc $0.90.10^{-3}$ mol de Cl⁻ dans 6.33 g de lait, soit $0.90.10^{-3} \times 100/6.33 = 0.0142$ mol de Cl⁻ dans 100 g de lait.

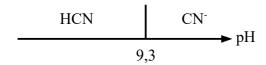
Ce qui correspond à $m(Cl^{-}) = 0.0142 \times 35.5 = 0.505 g$

Il y a 505 mg d'ions Cl⁻ dans 100 g de lait ce qui est en parfait accord avec l'étiquette.

B1.

couple HCN/CN^{-} $pH = pK_a + log([CN^{-}]/HCN)$

soit le diagramme de prédominance :



B2.

pour pH compris entre 0 et 1, HCN prédomine.

La réaction de précipitation s'écrit :

$$Ag^{+} + HCN = AgCN_{(s)} + H^{+} \qquad K \qquad (1)$$

$$AgCN_{(s)} = Ag^{+} + CN^{-} K_{S4}$$
 (2)

$$HCN = H^+ + CN^- \qquad K_A \qquad (3)$$

(1) = (3) – (2)
soit
$$\mathbf{K} = \mathbf{K}_A/\mathbf{K}_{S4}$$

$$K = 10^{-9.3} / 10^{-15.9}$$

$$K = 10^{+6.6}$$

à l'apparition du précipité,
$$K = [H^+]/([Ag^+].[HCN])$$
 avec $[Ag^+] = C(Ag^+) = 10^{-4} \text{ mol} \cdot L^{-1}$ et $[HCN] = C(CN^-) = 10^{-3} \text{ mol} \cdot L^{-1}$ $[H^+] = 10^{-0.4} \text{ mol} \cdot L^{-1}$

 $pH_1 = 0.4$ (en accord avec la figure 1).

B3

Pour pH compris entre 3 et 4, Ag(I) se trouve sous forme de Ag(CN)₂ en solution et HCN prédomine.

La réaction de dissolution du précipité s'écrit :

$$AgCN_{(s)} + HCN = Ag(CN)_2^- + H^+ \qquad K \qquad (1)$$

$$AgCN_{(s)} = Ag^{+} + CN^{-} K_{S4}$$
 (2)

$$HCN = H^+ + CN^- \qquad K_A \qquad (3)$$

$$Ag^{+} + 2 CN^{-} = Ag(CN)_{2}^{-} \beta_{2}$$
 (4)

$$(1) = (2) + (3) + (4)$$

$$K = K_{S4}.K_A.\beta_2$$

$$K = 10^{-15,9} \times 10^{-9,3} \times 10^{+21,1}$$

$$K = 10^{-4,1}$$

16/10/2019 Solutions aqueuses – Thermochimie

B4.

à la limite de disparition de AgCN(s), la conservation de la matière de CN en solution s'écrit :

$$C(CN^{-}) = [HCN] + [CN^{-}] + 2 \times [Ag(CN)_{2}^{-}]$$

facteur 2! car 2 ligand CN⁻ par molécule

pour un pH compris entre 3 et 4, CN⁻ est négligeable.

$C(CN^{-}) = [HCN] + 2 \times [Ag(CN)_{2}]$

De la même manière pour l'argent à la limite de précipitation de $AgCN_{(s)}$, la conservation de la matière en Ag dans la solution s'écrit :

$$C(Ag^+) = [Ag^+] + [Ag(CN)_2]$$

pour un pH compris entre 3 et 4, Ag⁺ est négligeable.

$$C(Ag^+) = [Ag(CN)_2]$$

$$K = [Ag(CN)_2^-].[H^+]/[HCN]$$
avec $[Ag(CN)_2^-] = C(Ag^+)$
et $[HCN] = C(CN^-) - 2 \times [Ag(CN)_2^-] = C(CN^-) - 2.C(Ag^+)$

$$[H^+] = K.[HCN]/[Ag(CN)2-]$$

 $[H^+] = K.(C(CN^-) - 2.C(Ag^+))/C(Ag^+)$

$$pH_2 = -log \left(\frac{K.(C(CN^-) - 2C(Ag^+))}{C(Ag^+)} \right)$$

 $pH_2 = 3.2$ (en accord avec la figure 1).

B5.

 $\begin{aligned} &pour \ pH < pH_1 = 0,\!4: Ag^+ \ pr\'edomine \\ &couple \ Ag^+ \ / \ Ag_{(s)} \\ &Ag^+ \ + \ e^- = \ Ag_{(s)} \end{aligned}$

La loi de Nernst donne:

$$E = E^{\circ}(Ag^{+}/Ag) + 0.06.log([Ag^{+}])$$

$$[Ag^{+}] = C(Ag^{+}) = 10^{-4} \text{ mol} \cdot L^{-1}$$

E = 0.56 V (en accord avec la figure 1).

B6.

pour 0.4 < pH < 3.2: HCN prédomine et AgCN présent couple $AgCN_{(s)} / Ag_{(s)}$ $AgCN_{(s)} + H^+ + e^- = Ag_{(s)} + HCN$

La loi de Nernst donne:

$$E = E^{\circ}(AgCN/Ag) + 0.06.log([H^{+}]/[HCN])$$
avec [HCN] = C(CN⁻)

$E = E^{\circ}(AgCN/Ag) - 0.06.log(C(CN^{-})) - 0.06.pH$

E est une fonction affine du pH (de la forme E = A + B.pH), avec une pente de -0,06 V/unité de pH.

B7.

pour $3.2 < pH < 9.3 : HCN et Ag(CN)_2^- prédominent couple Ag(CN)_2^- / Ag_{(s)}$ $Ag(CN)_2^- + 2 H^+ + e^- = Ag_{(s)} + 2 HCN$

La loi de Nernst donne :

$$\begin{split} E &= E^{\circ}(Ag(CN)_{2}^{-}/Ag) + 0.06.log([H^{+}]^{2}.[Ag(CN)_{2}^{-}]/[HCN]^{2}) \\ avec \ C(CN^{-}) &= [HCN] + 2 \times [Ag(CN)_{2}^{-}] \\ et \ C(Ag^{+}) &= [Ag(CN)_{2}^{-}] \end{split}$$

 $E = E^{\circ}(Ag(CN)_{2}^{-}/Ag) + 0.06.log(C(Ag^{+})) - 0.12.log(C(CN^{-}) - 2 \times C(Ag^{+})) - 0.12.pH$

E est une fonction affine du pH (de la forme E = A + B.pH), avec une pente de -0,12 V/unité de pH.

B8.

pour pH > 9,3 : CN⁻ et Ag(CN)₂⁻ prédominent couple Ag(CN)₂⁻ / Ag_(s) Ag(CN)₂⁻ + e⁻ = Ag_(s) + 2 CN⁻

La loi de Nernst donne :

$$\begin{split} E &= E^{\circ}(Ag(CN)_{2}^{-}/Ag) + 0,06.log([Ag(CN)_{2}^{-}]/[CN^{-}]^{2}) \\ avec \ C(CN^{-}) &= [CN^{-}] + 2 \times [Ag(CN)_{2}^{-}] \\ et \ C(Ag^{+}) &= [Ag(CN)_{2}^{-}] \end{split}$$

Elle est indépendant de [H⁺].

La valeur est donc nulle, ce qui est cohérent avec l'horizontale sur la figure 1.

B9.

pour pH > 9,3, on considère le couple $Ag(CN)_2^-/Ag$: $Ag(CN)_2^- + e^- = Ag_{(s)} + 2CN^-$

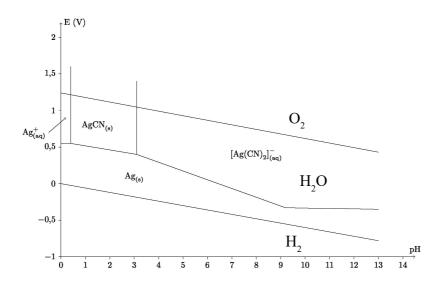
$$O_2 + 4 H^+ + 4 e^- = 2 H_2O$$

soit le bilan:

$$4 \ Ag_{(s)} \ + 8 \ CN^{\text{-}} \ + \ O_2 \ + \ 4 \ H^{\text{+}} \ = \ 4 \ Ag(CN)_2^{\text{-}} \ + \ 2 \ H_2O$$

en milieu basique on élimine les 4 H⁺ par ajout de 4 OH⁻ après simplification, on obtient :

$$4 Ag_{(s)} + 8 CN^{-} + O_{2} + 2 H_{2}O = 4 Ag(CN)_{2}^{-} + 4 OH^{-}$$



On remarque sur la figure 1 que O_2 et $Ag_{(s)}$ ont des domaines disjoints. Ils ne peuvent coexister et réagissent entre eux de manière totale.

C1.

Le bain est constitué de Ag(CN)₂⁻ et CN⁻. C'est CN⁻ base faible qui impose le pH via l'équilibre :

$$mol \cdot L^{-1}$$
 $CN^{-} + H_{2}O = HCN + OH^{-}$
EI 1,4 0 0
EF 1,4-x x x

$$\begin{split} &\log K = pK_a(HCN/CN^{\text{-}}) - pK_a(H_2O/OH.) = 9,3 - 14 = -4,7 \\ &K = x^2/(1,4\text{-}x) \\ &\text{La résolution donne } x = 5,3.10^{\text{-}3} \\ &[OH^{\text{-}}] = 5,3.10^{\text{-}3} \text{ mol} \cdot L^{\text{-}1} \text{ soit } pOH = 2,3 \\ &\textbf{pH} = \textbf{11,7} \end{split}$$

C2.

à pH = 11,7, CN et $Ag(CN)_2$ prédominent en solution

à l'anode (plaque d'argent), il peut se produit une oxydation :

de l'argent selon : $\begin{array}{lll} \textbf{Ag}_{(s)} + \textbf{2CN}^{\text{-}} &\rightarrow \textbf{Ag}(\textbf{CN})_2^{\text{-}} + \textbf{e}^{\text{-}} \\ \text{du solvant selon :} & 2 \text{ H}_2 \text{O} &\rightarrow \text{O}_2 + 4 \text{ H}^+ + 4 \text{ e}^{\text{-}} \\ \text{en milieu basique} & \textbf{4OH}^{\text{-}} &\rightarrow \textbf{O}_2 + \textbf{2H}_2 \text{O} + \textbf{4 e}^{\text{-}} \\ \end{array}$

à la cathode (pièce à argenter), il peut se produire une réduction :

du complexe selon : $Ag(CN)_2^- + e^- \rightarrow Ag_{(s)} + 2CN^-$

du solvant selon : $2 H^+ + 2 e^- \rightarrow H_2$

en milieu basique $2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^-$

Solutions aqueuses – Thermochimie

C3.

L'anode est qualifiée de soluble c'est à dire que l'anode en argent s'oxyde. Sur la cathode, il y a le dépôt d'argent.

Il se produit:

$$Ag_{(s)anode} + Ag(CN)_2^- \rightarrow Ag(CN)_2^- + Ag_{(s)pièce}$$

soit: $Ag_{(s)anode} \rightarrow Ag_{(s)pièce}$

C4.

Calcul de la masse d'argent à déposer :

$$m(Ag) = S.e.\rho(Ag) = 780.10^{-4} \times 10.10^{-6} \times 10,5.10^{3}$$

 $m(Ag) = 8,19.10^{-3} \text{ kg} = 8,19 \text{ g}$

Calcul de la quantité de matière d'argent :

$$n(Ag) = m(Ag)/M(Ag) = 8.19 / 108 = 7.58.10^{-2} \text{ mol}$$

Calcul de la quantité d'électrons :

 $n(Ag) = n(e^{-})$ d'après la demi-équation redox

$$n(e^{-}) = 7,58.10^{-2} \text{ mol}$$

mais le rendement de l'éelectrolyse est de 96 %, donc n(e)réel = n(e)/0,96 = 7,90.10-2 mol

(Seul 96 % des e⁻ produits par le générateur provoque la réaction voulue, les autres réalisent les réactions redox parasites avec le solvant).

Calcul du temps d'électrolyse :

$$\begin{split} Q &= I.t = n(e^{-})_{r\acute{e}el}.e.N_{A} \\ t &= n(e^{-})_{r\acute{e}el}.e.N_{A}/I = 7,90.10^{-2} \times 1,6.10^{-19} \times 6,02.10^{23} \ / \ 45 \\ t &= 169 \ s \end{split}$$

Energie électrique consommée :

$$E = P.t = U.I.t$$

 $E = 0.80 \times 45 \times 169$
 $E = 6084 J = 6.1 kJ$

C5.

$$2 \text{ CN}^{-} + \text{CO}_{2(g)} + \text{H}_2\text{O} = 2 \text{ HCN} + \text{CO}_3^{2-} \qquad K$$
 (1)

$$CO_{2(g)} = CO_{2(aq)}$$
 K_{diss} (2)
 $CO_{2(aq)} + H_2O = HCO_3^- + H^+$ K_{A1} (3)
 $HCO_3^- = CO_3^{2-} + H^+$ K_{A2} (4)
 $HCN = H^+ + CN^ K_A$ (5)

(1) = (2) + (3) + (4) - 2 × (5)

$$\mathbf{K} = (\mathbf{K}_{diss}.\mathbf{K}_{A1}.\mathbf{K}_{A2})/\mathbf{K}_{A}^{2}$$

$$\begin{array}{l} K = \left(10^{\text{-}1,4} \times 10^{\text{-}6,4} \times 10^{\text{-}10,3}\right) / \left(10^{\text{-}9,3}\right)^2 \\ K = 10^{\text{+}0,5} \end{array}$$

C6.

$$CNO^{-} + 2 H^{+} + 2 e^{-} = CN^{-} + H_{2}O$$

 $ClO^{-} + 2 H^{+} + 2 e^{-} = Cl^{-} + H_{2}O$
bilan : ClO⁻ + **CN**⁻ = **Cl**⁻ + **CNO**⁻